Lesson 15. The Chain Rule

1 This lesson

- Two special cases of the chain rule
- Tree diagrams and the general version of the chain rule

2 Case 1

- Let z = f(x, y) be a function of 2 variables
- Let x and y be functions of $\underline{1}$ variable: x = g(t) and y = h(t)
 - \Rightarrow z is indirectly a function of t: z = f(g(t), h(t))
- Can we find the derivative of z with respect to t?
- Chain rule (Case 1):

Example 1. Let $z = xy - x^2y$, $x = t^2 + 1$, and y = t - 1. Find dz/dt.

Example 2. Let $z = x^2y + 3xy^4$, $x = \sin 2t$, and $y = \cos t$. Find dz/dt when t = 0.

Case 2 • Let $z = f(x, y)$ be a function of 2 variables • Let x and y be functions of 2 variables: $x = g(s, t)$ and $y = h(s, t)$ $\Rightarrow z$ is indirectly a function of s and t : $z = f(g(s, t), h(s, t))$ • We can find the derivative of z with respect to s and t • Chain rule (Case 2): Example 4. Let $z = \sin x \cos y$, $x = st^2$, $y = s^2t$. Find $\partial z/\partial s$ and $\partial z/\partial t$.	Slim is currently 70 inches tall and 140 pounds. MIDN Slim is growing at a rate of 0 ag weight at a rate of 2 pounds per year. Find the rate at which MIDN Slim's BMI is c	-
 Let z = f(x, y) be a function of 2 variables Let x and y be functions of 2 variables: x = g(s, t) and y = h(s, t) ⇒ z is indirectly a function of s and t: z = f(g(s, t), h(s, t)) We can find the derivative of z with respect to s and t Chain rule (Case 2): 		
 Let x and y be functions of 2 variables: x = g(s,t) and y = h(s,t) ⇒ z is indirectly a function of s and t: z = f(g(s,t), h(s,t)) We can find the derivative of z with respect to s and t Chain rule (Case 2): 		
⇒ z is indirectly a function of s and t : $z = f(g(s, t), h(s, t))$ • We can find the derivative of z with respect to s and t • Chain rule (Case 2):) be a function of <u>2 variables</u>	
 We can find the derivative of z with respect to s and t Chain rule (Case 2): 	e functions of 2 variables: $x = g(s, t)$ and $y = h(s, t)$	
• Chain rule (Case 2):	ectly a function of s and t : $z = f(g(s, t), h(s, t))$	
	ne derivative of z with respect to s and t	
Example 4. Let $z = \sin x \cos y$, $x = st^2$, $y = s^2t$. Find $\partial z/\partial s$ and $\partial z/\partial t$.	Case 2):	
Example 4. Let $z = \sin x \cos y$, $x = st^2$, $y = s^2t$. Find $\partial z/\partial s$ and $\partial z/\partial t$.		
	$x = \sin x \cos y$, $x = st^2$, $y = s^2t$. Find $\partial z/\partial s$ and $\partial z/\partial t$.	

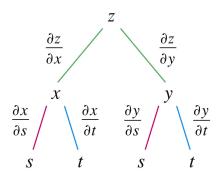
Example 5. Suppose f is a differentiable function of x and y, and $g(u,v) = f(e^u + \sin v, e^u + \cos v)$. Use the following table to compute $g_u(0,0)$ and $g_v(0,0)$.

	f	g	f_x	f_y
(0,0)	1	4	8	0
(1, 2)	4	1	3	6

4 Tree diagrams

• How can we remember the more complex chain rule (i.e. Case 2)?

• Draw a **tree diagram**:



• To get $\partial z/\partial s$, follow all the paths from z to s:

• This idea can be extended in general to functions of 3 or more variables

Example 6. Write out the chain rule for the case where z = f(w, x, y), w = g(s, t), x = h(s, t), $y = \ell(s, t)$.

Example 7. Write out the chain rule for the case where w = f(x, y, z), x = g(t), y = h(t), $z = \ell(t)$.

Example 8. L	$et w = \ln(\sqrt{x^2})$						
Example 9. T	he length 🛭 wi	idth wand hei	ght h of a box	change with ti	ime. At a certai	n instant the dir	nensions ar
	m, and $h = 2$	m. ℓ and w are of the diagonal	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	f 3 m/s. Find
	m, and $h = 2$	m. ℓ and w are	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	3 m/s. Find
	m, and $h = 2$	m. ℓ and w are	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	3 m/s. Find
	m, and $h = 2$	m. ℓ and w are	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	3 m/s. Find
	m, and $h = 2$	m. ℓ and w are	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	3 m/s. Find
	m, and $h = 2$	m. ℓ and w are	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	3 m/s. Find
	m, and $h = 2$	m. ℓ and w are	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	3 m/s. Find
	m, and $h = 2$	m. ℓ and w are	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	3 m/s. Find
	m, and $h = 2$	m. ℓ and w are	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	3 m/s. Find
	m, and $h = 2$	m. ℓ and w are	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	3 m/s. Find
	m, and $h = 2$	m. ℓ and w are	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	3 m/s. Find
	m, and $h = 2$	m. ℓ and w are	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	3 m/s. Find
	m, and $h = 2$	m. ℓ and w are	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	3 m/s. Find
	m, and $h = 2$	m. ℓ and w are	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	3 m/s. Find
	m, and $h = 2$	m. ℓ and w are	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	3 m/s. Find
	m, and $h = 2$	m. ℓ and w are	increasing at	a rate of 2 m/s	while <i>h</i> is decre	easing at a rate of	3 m/s. Fine